Notes on the Use of Composite Hose...

SELECTION:
Hose applications can be tough, and it is never advisable to select a hose that will be subjected simultaneously to pressure, temperature, and bending radius at the upper limits of its specification. Please contact us for advice on such applications.

INSTALLATION:
Incorrect installation may greatly shorten the working life of a hose assembly. In particular, care should be taken so that:
- hose assemblies are not twisted in installation or in use
- hoses that flex in use are routed so that all flexing occurs in the same plane
- minimum bend radius is not exceeded
- the hose insert is held when attaching threaded adapters. Twisting the insert in the hose will ruin the seal.

HANDLING:
Ropes should not be used to support a composite hose, as they may displace the wire helix. Always use hose slings or supports to spread the load on the hose surface.

CLEANING:
Hoses should be cleaned after use and before testing. The method used will depend upon service and hose type. The maximum working temperature of the hose should not be exceeded, and steam lances should not be used. Hoses should be electrically grounded during cleaning.

STORAGE:
After service, hoses should be flushed and drained. Ideally, hoses not in use should be stored off the ground in a straight line in a cool shaded area.

Testing & Inspection of Composite Hose...

TESTING:
Every six months, composite hoses should be checked for electrical continuity using the following procedure: 1. Lay hose flat on the ground. 2. Check that the hose is electrically continuous from end to end. A battery light can be used, however ideally an ohmmeter can be used. Electrical resistance should not exceed 10 ohms. Every six months for chemical hoses, and every twelve months for tank truck hoses, hoses should be pressure tested as follows:
1. Drain and clean the hose assembly.
2. Inspect the hose for damage. Hoses that show significant physical damage should not be tested.
3. Lay the hose out straight, with room for elongation under pressure.
4. Blank off one end and fill the hose with water. Take care to make sure all of the air is removed from the hose before pressurizing.
5. Raise to the appropriate test pressure and hold. Inspect for leaks and test for electrical continuity.
6. Release pressure and drain. Mark the hose with test date and details of test.

Note: Elongation of a composite hose under pressure is a feature of its design. Elongation is high compared with conventional rubber hoses and cannot be used as an assessment of the condition of a composite hose.

INSPECTION:
Before use, hoses should be visually inspected for the following:
1. Displacement of the reinforcing wires from their normal pitch.
2. Abrasion or corrosion of the outer wire.
3. Abrasion of the reinforcing fabrics under the outer cover.
4. Dents or kinks.
5. Damage or displacement of end fittings.
6. Evidence of leakage at the end fittings.

REPAIRS:
Specialized procedures are required for fitting attachment and hose repair. Please contact us for hose repairs.